Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(2): zqae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486975

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica , Células Endoteliais , Impedância Elétrica
2.
Neurochem Res ; 48(4): 1211-1221, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35859077

RESUMO

Multiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF. Treatment with bFGF (8 ng/ml) for 3 days increased phosphorylation of ERK1/2 and STAT3. Treatment with FGF receptor 1 (FGFR1) inhibitor PD173074 (15 µM) suppressed both basal and bFGF-induced activation of ERK1/2 and STAT3. Suppression of STAT signalling with Janus kinase inhibitor JAKi (15 nM) alone or in the presence of bFGF did not change TEER in BEC monolayers. Exposure to JAKi affected neither proliferation, nor expression and distribution of tight junction (TJ) proteins claudin-5, occludin and zonula occludens-1 (ZO-1). In contrast, treatment with MEK 1/2 inhibitor U0126 (10 µM) partially neutralised inhibitory effect of bFGF thus increasing TEER, whereas U0126 alone did not affect resistance of endothelial barrier. Our findings demonstrate that MAPK/ERK signalling pathway does not affect autocrine bFGF signalling-dependent BECs barrier function but is largely responsible for the disruptive effects of the exogenous bFGF. We speculate that bFGF may (depending on concentration and possibly origin) dynamically regulate permeability of the endothelial blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fator 2 de Crescimento de Fibroblastos , Humanos , Barreira Hematoencefálica/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Butadienos/farmacologia , Proteínas de Junções Íntimas/metabolismo
3.
J Cell Physiol ; 236(11): 7642-7654, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33959949

RESUMO

Multiple paracrine factors regulate the barrier properties of human brain capillary endothelial cells (BCECs). Understanding the precise mode of action of these factors remains a challenging task, because of the limited availability of functionally competent BCECs and the use of serum-containing medium. In the present study, we employed a defined protocol for producing BCECs from human inducible pluripotent stem cells. We found that autocrine secretion of basic fibroblast growth factor (bFGF) is necessary for the establishment a tight BCECs barrier, as revealed by measurements of transendothelial electric resistance (TEER). In contrast, addition of exogenous bFGF in concentrations higher than 4 ng/ml inhibited TEER in a concentration-dependent manner. Exogenous bFGF did not significantly affect expression and distribution of tight junction proteins claudin-5, occludin and zonula occludens (ZO)-1. Treatment with FGF receptor blocker PD173074 (15 µM) suppressed inhibitory effects of bFGF and induced nuclear translocation of protein ZO-1. Inhibition of phosphoinositide 3-Kinase (PI-3K) with LY294002 (25 µM) significantly potentiated an inhibitory effect of bFGF on TEER indicating that PI-3K signalling pathway counteracts bFGF modulation of TEER. In conclusion, we show that autocrine bFGF secretion is necessary for the proper barrier function of BCECs, whereas exogenous bFGF in higher doses suppresses barrier resistance. Our findings demonstrate a dual role for bFGF in the regulation of BCEC barrier function.


Assuntos
Encéfalo/irrigação sanguínea , Capilares/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Comunicação Autócrina , Capilares/metabolismo , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Impedância Elétrica , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Permeabilidade , Fosfatidilinositol 3-Quinase/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/agonistas , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
4.
Cell Mol Neurobiol ; 41(3): 551-562, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32440709

RESUMO

Impairments of the blood-brain barrier (BBB) and vascular dysfunction contribute to Alzheimer's disease (AD) from the earliest stages. However, the influence of AD-affected astrocytes on the BBB remain largely unexplored. In the present study, we created an in vitro BBB using human-immortalized endothelial cells in combination with immortalized astroglial cell lines from the hippocampus of 3xTG-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively). We found that co-culturing endothelial monolayers with WT-iAstro upregulates expression of endothelial tight junction proteins (claudin-5, occludin, ZO-1) and increases the trans-endothelial electrical resistance (TEER). In contrast, co-culturing with 3Tg-iAstro does not affect expression of tight junction proteins and does not change the TEER of endothelial monolayers. The same in vitro model has been used to evaluate the effects of extracellular vesicles (EVs) derived from the WT-iAstro and 3Tg-iAstro. The EVs derived from WT-iAstro increased TEER and upregulated expression of tight junction proteins, whereas EVs from 3Tg-iAstro were ineffective. In conclusion, we show for the first time that immortalized hippocampal astrocytes from 3xTG-AD mice exhibit impaired capacity to support BBB integrity in vitro through paracrine mechanisms and may represent an important factor underlying vascular abnormalities during development of AD.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Comunicação Celular , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/patologia , Neuroglia/metabolismo , Doença de Alzheimer/genética , Animais , Astrócitos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Meios de Cultivo Condicionados/farmacologia , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima/genética
5.
Exp Cell Res ; 389(1): 111877, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31991124

RESUMO

Reversible electroporation is a temporary permeabilization of cell membrane through the formation of transient pores created by short high voltage electric pulses. This method has numerous applications in biology and biotechnology and has become an important technique in molecular medicine. Reversible electroporation is usually used to transfer macromolecules into the cells. However, the delivery of large molecules such as proteins into cells without loss of cell viability remains a challenge. In our study, we investigated whether electroporation can be used for this purpose. The study was performed with the primary mouse splenocytes and Jurkat cell line. The electroporation efficacy was evaluated by flow cytometry. We used the reversible electroporation for intracellular marker detection investigating antibody and fluorescein-conjugated dextran transfer efficiency, cell viability and metabolic activity. We have found that reversible electroporation parameters can be optimized for efficient transfer of large molecules such as antibodies/proteins into live cells without a significant loss of cell viability. We conclude that a well-established and relatively easy method of reversible electroporation can be adjusted to detect intracellular biomarkers in viable cells. This is a new approach on how electroporation could be utilised in medicine and biological research to detect rare subpopulations of cells that produce specific markers and to keep cells viable. This would allow the use of these rare subpopulations of isolated cells for further research and personalized medicine.


Assuntos
Biomarcadores/análise , Eletricidade , Eletroporação , Citometria de Fluxo/métodos , Animais , Biomarcadores/metabolismo , Contagem de Células/métodos , Permeabilidade da Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Estimulação Elétrica , Eletricidade/efeitos adversos , Eletroporação/métodos , Feminino , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...